
Spring 2018 Math 541

Homework Solutions – MatLab Programming Due Tues. 2/01/18

1. (Each part 1 pt) If I give you the array

1 X = linspace(0,1,5);

(a) How many points are in the array?

5

(b) What is the spacing between the points?

1
4

(c) What code would you write to double the number of points in the array?

X = linspace(0,1,10);

(d) What code would you write to have equally spaced points in the interval [0, 2], but
with the same spacing between points as the original array?

X = linspace(0,2,9);

(e) What code would I write to turn X into a column vector?

X’

(f) What array would the code X.ˆ2 produce?

0 0.0625 0.2500 0.5625 1.0000 1.5625 2.2500 3.0625 4.0000

The code returns the square of each term.

(g) What array would the code X(end:-1:1) produce?

2.0000 1.7500 1.5000 1.2500 1.0000 0.7500 0.5000 0.2500 0

The code returns the array with the horizontal position inverted.

(h) Using vectorization, what code would I write to efficiently plot 2003 equally spaced
points of the function sin(x3 + 2x) over the interval [−3.7, 4.2] in the color blue with
a linewidth of 2? Note, your answer should be two lines. One to define an array of
points, say X, and one to make the plot.

1 x=linspace(-3.7, 4.2, 2003);
2 plot(x,sin(x.ˆ3 + 2*x), 'b-','Linewidth', 2)

2. (3 pts) Using a for loop based approach, write a program which finds

n∑
j=1

(j3 + 4j2),

for any n. Give the answers for n = 10, 43, and 72.

Solution:

1 function tot = sumfun(nstop)
2

3 tot = 0;
4 for jj=1:nstop
5 tot = tot + (jj.ˆ3 + 4.*jj.ˆ2);
6 end
7 end

n
∑

10 4565
43 1004652
72 7414464

3. (3 pts) Extend the program for generating Fibonacci numbers to satisfy the recursion
relationship:

pn = apn−1 + bpn−2, p0 = s0, p1 = s1.

Your program should take as input the values a, b, s0, s1, and n, and it should return pn.

Solution:

1 function pn = gen fib(a,b,s0,s1,n)
2

3 p = zeros(n,1);
4 p(1) = s0;
5 p(2) = s1;
6 for jj = 2:n
7 k = jj + 1;
8 p(k) = a.*p(k - 1) + b.*p(k - 2);
9 end

10 format long;
11 pn=p(k);
12 end

For a = 3.2, b = −2, s0 = 3, s1 = 0, what is p10? What is p50?

p10 = −8.705920450560010× 103

p50 = −5.891661895145126× 1018

4. (4 pts) Each new term in the Fibonacci sequence is generated by adding the previous
two terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceed four
million, find the sum of the even-valued terms. Note, the use of the Matlab command
mod is going to be critical.

Solution:

Note to grader: Students are not required to show their program, but it is preferred if
they do.

1 function tot = fibonaccisum
2

3 f(1) = 1;
4 f(2) = 2;
5 tot=2;
6 k=2;
7 while f(k)<4000000
8 k=k+1;
9 f(k) = f(k-1) + f(k-2);

10 if f(k)<4000000
11 if mod(f(k), 2)==0;
12 tot=tot+f(k);
13 end
14 end
15 end
16 end

The sum of even valued terms is 4613732.

5. (4 pts) If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,
5, 6, and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5
below 1000.

Solution:

1 function tot = natsum
2

3 tot=0;
4 for n=1:999
5 if ((mod(n,3)==0) | |(mod(n,5)==0))
6 tot=tot+n;
7 end
8 end
9 end

The sum is 233168.

6. (3 pts) Using Matlab and the Maclaurin series for sin(x), write a code, which computes
sin(1). Explain how you choose a stopping criteria, and determine the maximum accuracy
you are able to achieve.

Solution:

The Maclaurin series for sin(1) is

sin(1) =

∞∑
n=0

(−1)n

(2n+ 1)!

Our recurrence formula shows that each iteration has the previous term in the series
multiplied by −1

(2n+1)(2n) , which easily included in a program similar to the one from class

for computing e1. The MatLab code is as follows:

1 function y = sin1(tol)
2 %Approximation of sin(1) to a given tolerance
3 y = 1;
4 term = y;
5 n = 1;
6 while (abs(term) ≥ tol)
7 term = term.*(-1)./((2*n+1)*(2*n));
8 y = y + term;
9 n = n + 1;

10 end
11 end

The value computed to maximum accuracy (double precision) is

sin(1) = 0.841470984807897

This value is obtained from the program by selecting double precision tolerance or tol =
10−16. (In fact, this accuracy is obtained because of the strong convergence whenever
tol < 10−13.) The program will continue in the while loop until the last term added to
the series is less than the tolerance level, which by the Taylor Remainder Theorem gives
the degree of accuracy desired. (Note to grader: Some students may not have understood
that maximum accuracy means precision arithmetic (next section of study), so allow any
discussion saying what accuracy they observed and how they obtained it.)

7. (5 pts) Create a Matlab function of the Maclaurin series for cos(x), which depends on
x and a tolerance, tol. Explain how you choose a stopping criteria, and determine the
maximum accuracy you are able to achieve. Create another MatLab function, which plots
the function for −Lx ≤ x ≤ Lx where Lx is a user specified input. Overlay a plot of the
MatLab defined function cos(x), using dashed lines.

Solution:

The Maclaurin series for cos(x) is

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!

We follow the class example for ex and obtain the cos series:

1 function y = cosx(x,tol)
2 %Approximation to cos(x) to a given tolerance
3 y = 1;
4 term = 1;
5 k = 1;
6 while (max(abs(term)) ≥ tol)
7 term = term.*(-x.ˆ2)./((2*k)*(2*k-1));
8 y = y + term;
9 k = k + 1;

10 end
11 end

As before, the maximum accuracy would be double precision, so choosing a tolerance,
tol = 10−16. In this case, we allow the vector x to be entered, so the stopping criterion
chosen is for the maximum in absolute value of the next term in the Maclaurin series,
which depends on the x value, so is a vector of values. When the largest (in absolute
value) of the terms is less than the prescribed tolerance, then the program terminates.
Clearly, the larger the x value and the smaller the tolerance, the more iterations that
the program will need to use. (Note to grader: Some students may not have understood
that maximum accuracy means precision arithmetic (next section of study), so allow any
discussion saying what accuracy they observed and how they obtained it.)

The program below generates the desired graph, and we use the template for graphing
y = ex. (We note that since this is a graph, we do NOT need double precision accuracy.)

1 function cos plot(Lx,res,tol)
2 % Create a plot using the exp sum function
3 xx = linspace(-Lx,Lx,res); % x points of evaluation
4 yy = cosx(xx,tol); % run exp series program
5 yy1 = cos(xx); % evaluate eˆx with MatLab
6

7 figure(101) % assign a figure number
8

9 plot(xx,yy,'r-','LineWidth',1.5); % plot the series
10 hold on % add more graphs
11 plot(xx,yy1,'b--','LineWidth',1.5);% plot eˆx
12 grid; % provide gridlines
13 legend('Series cosine','MatLab cosine');
14

15 % Set up fonts and labels for the Graph
16 fontlabs = 'Times New Roman';
17 xlabel('x','FontSize',16,'FontName',fontlabs, ...
18 'interpreter','latex');
19 ylabel('$\cos(x)$','FontSize',16,'FontName',fontlabs, ...
20 'interpreter','latex');
21 mytitle = 'Series for $\cos(x)$';
22 title(mytitle,'FontSize',16,'FontName', ...
23 'Times New Roman','interpreter','latex');
24 set(gca,'FontSize',16);
25

26 print -depsc cos gr.eps % Create EPS file (Figure)
27 end

The graph is below in Figure 1.

-10 -5 0 5 10
x

-1

-0.5

0

0.5

1

co
s(
x
)

Series for cos(x)

Series cosine
MatLab cosine

Figure 1: Plot of y = cos(x) for x ∈ [−10, 10].

8. (10 pts) An important differential equation in mathematical physics is Airy’s equation
which is given by

y′′ − xy = 0.

Two solutions to this equation can be found via the power series solutions

y1(x) = 1 +
∞∑

m=1

x3m

(2 · 3)(5 · 6) · · · ((3m− 1) · 3m)

and

y2(x) = x+
∞∑

m=1

x3m+1

(3 · 4)(6 · 7) · · · (3m · (3m+ 1))

Write a while based code which ultimately plots the function for −Lx ≤ x ≤ 0 and
0 ≤ x ≤ Lx where Lx is a user specified input. So, first, you would write a code which
found the solutions to Airy’s equation. Then, you would want a code, which plots this
function.

Explain how you choose a stopping criteria and the accuracy you are able to achieve with
your program. How large can you make Lx before your series solutions are unreliable?
Provide plots that justify your answer. Describe the difference between the behavior of
the solutions for x < 0 and x > 0. (Hint: Refer to the class notes on Bessel functions to
help design these programs.)

Solution:
Using the code for generating the Bessel functions as a model, we can write one program
to generate both functions via the code

1 function [y1x,y2x] = airy maker(x,tol)
2 vprod = x.ˆ3;
3 y1x = vprod./(2*3); y2x = vprod./(3*4);
4 term1 = y1x; term2 = y2x;
5 count = 2;
6 while(max(abs(term1))≥tol)
7 term1 = term1.*vprod./((3*count-1)*(3*count));
8 term2 = term2.*vprod./((3*count)*(3*count+1));
9 y1x = y1x + term1;

10 y2x = y2x + term2;
11 count = count + 1;
12 end
13 y1x = 1 + y1x;
14 y2x = x.*(1 + y2x);
15 end

To make pretty pretty plots, I modify the bessel plotter code and write

1 function airy plotter(Llx,res)
2 tol=0.000001;
3 pos = linspace(0,Llx,res);
4 neg = linspace(-Llx,0,res);
5

6 [py1x,py2x] = airy maker(pos,tol);
7 [ny1x,ny2x] = airy maker(neg,tol);
8

9 figure(1)
10 plot(pos,py1x,'r--',pos,py2x,'b','LineWidth',1.5)
11 grid;
12 h=legend('$y 1(x)$','$y 2(x)$','Location','northwest');
13 set(h,'Interpreter','latex');
14 set(gca,'FontSize',18,'FontName','Times New Roman')
15 xlabel('x','FontName','Times New Roman','FontSize',18,...
16 'Interpreter','latex')
17 print -depsc airy p1.eps
18

19 figure(2)
20 plot(neg,ny1x,'r--',neg,ny2x,'b','LineWidth',1.5)
21 grid;
22 h=legend('$y 1(x)$','$y 2(x)$','Location','southwest');
23 set(h,'Interpreter','latex');
24 set(gca,'FontSize',18,'FontName','Times New Roman')
25 xlabel('x','FontName','Times New Roman','FontSize',18,...
26 'Interpreter','latex')
27 print -depsc airy n1.eps
28 end

Note, in order to get nice plots, I split my interval −Lx ≤ x ≤ Lx up into negative and
positive parts. Using tol = 1e-6, and Lx = 5, I then produced the plots in Figure 2.
Note, I also generated these figures using a tolerance of tol = 1e-8, but there was no
noticeable difference in the plots, and thus we can argue that we have converged sufficiently
well with the lower tolerance. As we can see from the figures, the nature of the solution
is markedly different if x is negative or positive. When x < 0, we see both functions
oscillate as in Figure 2 (a), while for x > 0, both functions grow exponentially rapidly as

in Figure 2 (b).

−5 −4 −3 −2 −1 0
−1.5

−1

−0.5

0

0.5

1

x

y1(x)
y2(x)

0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

x

y1(x)
y2(x)

(a) (b)

Figure 2: Plots of the solutions to the Airy equation y1(x) and y2(x) for −5 ≤ x ≤ 0 (a) and
0 ≤ x ≤ 5 (b). tol = 1e-6 for both figures.

Given that if x is positive and large we expect unbounded growth, we can get a better
measure for how valid the series approach is by focusing on the case that x < 0. We now
choose L sufficiently large so that we see a break down in the smoothness of the plotted
solutions. As can be seen in Figure 3, the reliability of the series for giving an accurate
representation breaks down near x = −14. It is easy to show that using the series itself is
inherently a bad decision, since increasing the tolerance by six orders of magnitude does
nothing to alleviate the problem. (Figure not shown.)

−15 −10 −5 0
−1.5

−1

−0.5

0

0.5

1

x

y1(x)
y2(x)

−15 −14.5 −14 −13.5 −13
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y1(x)
y2(x)

(a) (b)

Figure 3: Plots of the solutions to the Airy equation y1(x) and y2(x) for −15 ≤ x ≤ 0 (a) and
−15 ≤ x ≤ −13 (b). tol = 1e-6 for both figures.

Results from the WeBWorK homework

1. (4 pts) If cn represents the concentration of the inert gas argon (Ar) in the lungs, then
a mathematical model for breathing is given by the discrete dynamical model:

cn+1 = (1− q)cn + qγ,

where q is the fraction of the lung volume exchanged with each breath and γ = 0.0093
(fraction of Ar in dry air) is the concentration of Ar in the atmosphere.

Create a MatLab program that produces a graph showing the concentration of Ar in the
first 10 breaths of both subjects (normal and emphysema). Your line style should be
data points connected by lines, e.g., bo - creates the appropriate blue open circle
connected by a blue line. Also, create a legend to label the different subjects. Provide a
title and axis labels that are appropriate for the graph produced.

Solution:

The values of q are computed in WeBWorK for both subjects and are used in the program
below. The random number generator means that students will have different initial
conditions and different values of q. However, the programs and graphs should be very
similar.

1 function concentration(n)
2 %concentration of argon
3 %with graph
4 n=n+1;
5 q = 120/1007;
6 qa = 525/(2350+525);
7 k=1;
8 c(1)=0.11;
9 ca(1) =0.11;

10 for k=2:n
11 ca(k) = (1-qa).*ca(k-1)+qa*0.0093;
12 c(k) = (1-q).*c(k-1)+q*0.0093;
13 end
14 x=linspace(0,k-1,k);
15 plot(x,ca(x+1),'bo-', 'LineWidth', 1.5);
16 hold on;grid;
17 plot(x,c(x+1),'ro-', 'LineWidth', 1.5);
18 fontlabs = 'Times New Roman';
19 xlabel('Breaths, ...

n','FontSize',16,'FontName',fontlabs,'interpreter','latex');
20 ylabel('[Ar]','FontSize',16,'FontName',fontlabs, 'interpreter','latex');
21 mytitle = 'Concentration of Argon';
22 title(mytitle,'FontSize',16,'FontName','Times New ...

Roman','interpreter','latex');
23 set(gca,'FontSize',16);
24 legend('Normal','Emphysema','Location','northeast');
25 print -depsc problem1.eps
26 end

0 2 4 6 8 10
Breaths, n

0.02

0.04

0.06

0.08

0.1

0.12

[A
r]

Concentration of Argon

Normal
Emphysema

To solve Part b and determine the number of breaths before dropping below [Ar] ≤ 0.01,
a related program with a while loop is constructed.

1 function conc2
2 %concentration of argon with while
3 q = 120/1007;
4 k=1;
5 c(1)=0.11;
6 while c(k)>0.01
7 k=k+1;
8 c(k) = (1-q).*c(k-1)+q*0.0093;
9 end

10 k-1
11 format long; c
12 end

2. (4 pts) The population of the United States was about 39.88 million in 1870 and 50.18
million in 1880. Let 1870 be represented by P0 and assume that its population is growing
according to the Malthusian growth law,

Pn+1 = (1 + r)Pn,

where n is in years.

Use MatLab to create a graph for your written HW of this model and the data. Plot the
graph of the Malthusian model over 30 years from 1870, using a line for the model. Use
open circles to graph all of the census data (3 points) given above. Provide a title and
axis labels that are appropriate for the graph produced.

Solution: A program is designed to graph the Malthusian growth model, the we include
the 3 data points for actual census data. (Note: The starting year and various given
populations vary between students, but programs should have similar structures.)

1 function popul2
2 % population graph
3 r=(50.18/39.78)ˆ(0.1)-1;
4 k=1;
5 P(1)= 39.78;
6 for k = 1:30
7 P(k+1)=(1+r)*P(k);
8 end
9 x=linspace(1870,1900,31);

10 hold off;
11 plot(x,P,'b-', 'LineWidth', 1.5);
12 hold on; grid;
13 plot([1870 1880 1890],[39.88 50.18 62.86],'bo');
14 fontlabs = 'Times New Roman';
15 xlabel('Date','FontSize',16,'FontName',fontlabs);
16 ylabel('Population (in millions)','FontSize',16,'FontName',fontlabs);
17 mytitle = 'U. S. Population since 1870';
18 title(mytitle,'FontSize',16,'FontName','Times New Roman');
19 set(gca,'FontSize',16);
20

21 print -depsc problem2.eps
22 end

1870 1875 1880 1885 1890 1895 1900
Date

30

40

50

60

70

80

Po
pu

la
tio

n
(i

n
m

ill
io

ns
)

U. S. Population since 1870

To solve Part c and determine the doubling time for this population, a related program
with a while loop is constructed, showing how long until the population doubles from
the population in 1870.

1 function popul1
2 % population doubling
3 r=(50.18/39.88)ˆ(0.1)-1
4 P(1)= 39.88;
5 k = 1;
6 while (P(k) ≤ 2*39.88)
7 k = k+1;
8 P(k)=(1+r)*P(k-1);
9 end

10 k-1
11 format long; P
12 end

3. (7 pts) This problem studies the behavior of the discrete logistic growth model as the
growth parameter varies. For certain parameter values, it is possible for this discrete
model to exhibit chaotic behavior. The discrete logistic growth model satisfies

Pn+1 = f(Pn) = Pn + rPn

(
1− Pn

M

)
.

This problem explores some of the complications that can arise as the parameter r varies.

Create a MatLab graph over 50 generations showing the simulations for r = 0.84 and
1.64. Create another graph showing the simulations for r = 2.21 and 2.47. Finally, create
a graph showing the simulation for r = 2.57. Simply use line segments to connect the
points of your simulation. Add a legend to label the different r values. Provide a title
and axis labels that are appropriate for the graph produced.

Solution: A program is designed to graph the discrete Logistic growth model. Our ex-
ample (different for different students) started P0 = 500. The carrying capacity (nonzero
equilibrium) is M = 4400. Simulations ran for 50 iterations with varying r values.

A version of the graphing program is seen below.

1 function discrete(n, P0)
2 %WW question 3 discrete dynamics
3 ra =0.84;
4 rb =1.64;
5 M=4400;
6 Pa(1)= P0;
7 Pb(1)=P0;
8 for k=2:n+1
9 Pa(k)=Pa(k-1)+ra*Pa(k-1)*(1-Pa(k-1)/M);

10 Pb(k)=Pb(k-1)+rb*Pb(k-1)*(1-Pb(k-1)/M);
11 end
12 x=linspace(0,k-1,k);
13 plot(x,Pa(x+1),'b-', 'LineWidth', 1.5);
14 hold on; grid;
15 plot(x,Pb(x+1),'r-', 'LineWidth', 1.5);
16 fontlabs = 'Times New Roman';
17 xlabel('n','FontSize',16,'FontName',fontlabs,'interpreter','latex');

18 ylabel('$P n$','FontSize',16,'FontName',fontlabs, 'interpreter','latex');
19 mytitle = 'Logistic Growth';
20 title(mytitle,'FontSize',16,'FontName','Times New Roman');
21 set(gca,'FontSize',16);
22 h=legend('$r = 0.84$','$r = 1.64$','Location','southeast');
23 set(h,'interpreter','latex');
24 print -depsc discrete3a.eps
25 end

Graphic output for the 5 values of r are shown below:

0 10 20 30 40 50
n

0

1000

2000

3000

4000

5000

P
n

Logistic Growth

r = 0.84

r = 1.64

0 10 20 30 40 50
n

0

1000

2000

3000

4000

5000

6000

P
n

Logistic Growth

r = 2.21

r = 2.47

0 10 20 30 40 50
n

0

1000

2000

3000

4000

5000

6000

P
n

Logistic Growth

r = 2.57

